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EFFICIENT COMPUTATIONS USING UPWIND BIASED SCHEMES 

C. DE NICOLA,* G. IACCARINO AND R. TOGNACCINI 
Dipurtimenio di Progenazione Aeronuuiicu. Universita di Nupoli, Federico II, Piazzule I! Tecchio 80, Nupoli 80125, Italy 

SUMMARY 

A new multiblock unfactored implicit upwind scheme for inviscid two-dimensional flow calculations is presented. 
Spatial discretization is carried out by means of an upwind first-order method; an original extension to higher 
accuracy is also presented. The integration algorithm is constructed in a delta form that provides a direct derivation 
of the scheme and leads to an efficient computational method. Fast solutions of the linear systems arising at each 
time step are obtained by means of the bi-conjugate gradient stabilized technique. The computational results for 
super/hypersonic steady state flows illustrate the efficiency and accuracy of the algorithm. 

KEY WORDS implicit multiblock algorithm; upwind scheme; local grid refinement 

1. INTRODUCTION 

There is now no shortage of numerical methods for the integration of fluid dynamic equations. In 
particular, significant innovations have been made in the numerical simulation of inviscid compressible 
flows. In the last few years, upwind methods have become quite popular and have been used for a variety 
of applications with considerable success.' The introduction of physical properties within the 
discretization of spatial derivatives yields a robust and accurate method (not requiring arbitrary 
smoothing parameters) for the analysis of discontinuous flow fields. 

At present, one of the main drawbacks of modem shock-capturing schemes is their complexity when 
compared with classical central discretized schemes. In particular we were interested in the first-order 
upwind scheme of Pandoifi and Borrelli' (PB) designed for the computation of non-equilibrium 
hypersonic flows. The application of this scheme is limited for practical multidimensional steady state 
calculations by the slow convergence of its explicit one-step time integration. 

A significant improvement in the computational efficiency can be achieved by combining different 
convergence acceleration techniques and computational approaches. In this work, in particular, it will be 
seen how recent progress in the solution of large sparse linear systems and a multiblock structured 
approach combined with local grid refinement can reduce computational costs by an order of magnitude 
for two-dimensional applications. 

Implicit integration algorithms have usually been used with upwind discretizations, especially for 
steady state calculations. Explicit schemes such as multistage time stepping, well suited for central 
difference schemes, have not found favour since they are difficult to design for optimal performance 
with upwind methods. Implicit schemes have been praised for their improved stability and condemned 
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for their large operation counts, in particular for multidimensional calculations. In the late 1970s the 
most significant achievement in this field was the introduction of the alternating direction implicit 
alg~rithm.~ This technique has a Courant-Frednchs-Lewy (CFL) limit due to the factorization error. 

Interest has been spurred recently by the development of new iterative solvers of linear systems that 
allow efficient calculations with implicit unfactored schemes, giving better convergence and stability 
properties. There is a considerable literature concerning iterative solutions to linear systems. Although 
the conjugate gradient technique for the solution of a symmetric, positive definite system is well 
established, methods for solving non-symmetric problems are still evolving. The generalized minimum 
residual (GMRES) and conjugate gradient squared (CGS) techniques are efficient methods and have 
been used in a wide range of  application^.^,^ Another promising method, showing improved 
convergence properties and computational efficiency, was introduced in 1992 by Van der Voorst; 
namely the bi-conjugate gradient stabilized (BiCGStab) algorithm. 

In this paper we compute two-dimensional super/hypersonic flows by means of an original implicit 
unfactored upwind scheme based on the PB scheme; the linear system of equations arising at each time 
step is solved by the BiCGStab technique. A multiblock structured approach (MSA) is used in order to 
reduce the CPU time required to obtain numerical simulations. Historically the MSA has been 
introduced to simplifl the grid generation process around complex three-dimensional geometries. In 
this context we are interested in its characteristic of enabling simple implementation of local grid 
refinement7 and limiting the number of unknowns when the implicit procedure is employed with a fine 
grid. 

The present method is completely defined without introducing any user parameter: damping terms, 
artificial viscosity, entropy fix, CFL bound. Its robustness makes this scheme well suited for complex 
high-speed flows with shock interactions and sonic transition. 

In order to verify the effectiveness of the acceleration techniques for accurate compressible 
simulations, a novel extension of the PB scheme to second-order accuracy has been developed and 
presented. 

A brief description of the PB scheme is presented in Section 2. The new implicit time integration and 
linearization procedures are shown in Section 3 together with the multiblock structured approach and 
local grid refinement technique. The numerical results are discussed in Section 4. Finally the symmetric 
PB (SPB) TVD scheme is presented in Section 5. 

2. PANDOLFI-BORRELLI UPWIND SCHEME 

We are interested in the numerical solution of inviscid steady flow fields by means of the unsteady Euler 
equations written in the conservative form 

where U is the vector of conservative variables (density p, momentum m, energy per unit volume e), 
f(U) is the flux of U and R is the physical domain (iKz and n are respectively the border of R and its local 
outward unit normal vector). 

Given a structured grid of the domain R, a finite volume discretization applied to equation (1) allows 
shock capturing in compressible flows; it leads to a set of non-linear first-order ordinary differential 
equations 

d R.. 
-u. .+A = 0 V Q j  c n, dt l,J 
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where ui, is an approximation to the solution in the grid cell volume Q ,  and Ri, is the net flux out of 
the cell (e.g. in the two-dimensional case Ri,j = Fi+1/2 - Fi-1/2 + Fj+1,2 - Fj-1/2, where the subscripts 
i f and j f 1 specify quantities computed on the border of each quadrilateral Q and F is the numerical 
approximation to the flux 9. 

The integration of equation (2) is carried out by the classical one-step explicit updating (for the two- 
dimensional Euler equations) 

where Atj,j is the local time step computed according to the CFL stability limit. 
Upstream differencing attempts to discretize the equations by using differences biased in the direction 

determined by the sign of the characteristic speed; the interface state is computed as a solution to a 
Riemann problem (RP). 

The evaluation of numerical fluxes in equation (3) is based on Godunov’s basic idea of flux difference 
splitting (FDS). A ‘projection’stage makes it possible to identify two constant states at a given interface 
that are the initial values for the RP (Figures l(a) and 10)). 

At the ‘evolution’stage the RP is solved to select the ‘correct’ interface state ( u ~ + , , ~ , ~  = u, in Figure 
l(c)). In multidimensional FDS schemes the RP is solved in the direction normal to the cell interface as 
a one-dimensional RP. 

Modem FDS methods solve the RP in an approximate but efficient way; historically, Roe’ and Osher 
and Solomon9 anticipated Pandolfi and Borrelli’s approximate Riemann solver (ARS). Roe’s A R S  is 
based on a local linearization of the Euler equations, providing exact resolution of discontinuities but 
allowing steady solutions with expansion shocks, and requires a numerical parameter to satisfy the 
entropy condition (entropy fix). Osher’s solver is more complicated and is based on the ‘simple wave 
solution’ of the RP. This leads to the exclusion of unphysical expansion discontinuities and provides a 
description of steady shocks with two interior cells and no overshoot. 

The PB approach may be considered as a modification” of the Osher ARS. The numerical flux F is 
given by 

(3 (b) (C) 

Figure 1 .  The Riemann problem 
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where fi,j = f(ui,,). To evaluate the integral in equation (4), two intermediate points u, and ud are 
introduced (ui, = u,, u ~ + ~ ,  = ub). These points defme three subpaths rk (k = 1 ,  2, 3) along which the 
integral is computed and these are associated with an eigenvalue of the Jacobian matrix X/au and a set 
of characteristic variables. These quantities remain constant along the subpath and this property is used 
in calculating the dependent variables at the intermediate points. For example, 

where 22 is the eigenvalue associated with the second subpath. The main difference between the Osher 
and PB solvers is in the ordering of the subpath in (4); in the present paper we use PB ordering with 
increasing eigenvalues. Another important difference lies in the solution of the RP, which is carried out 
by means of the Riemann invariants in the Osher ARS while in the PB approach the characteristic 
variables are used. 

In Appendix I the complete algorithm for the Euler flux computation of the PB scheme is reported. 

3. THE NEW TIME INTEGRATION ALGORITHM 

Historically, multidimensional calculations using implicit schemes were carried out by means of 
factored techniques in which the differential operator was split into the product of one-dimensional 
operators." In this way the computational cost and complexity of the integration scheme diminish, 
because simple and fast direct solvers of (block) tridiagonal matrices can be applied. The factorization 
error introduces a stability limit (bounded time step), reducing the efficiency for steady state 
calculations. 

Another traditional technique for solving fluid dynamic equations is the Newton iterative algorithm, l 2  

which, unlike the time relaxation procedure, attempts to integrate the steady equations directly. The 
most interesting property of the Newton iterative approach is its 'superlinear' convergence to the 
solution, but an undoubted drawback is the excessive dependence on the initial guess. 

In the past the use of an unfactored implicit time-marching procedure was limited owing to large 
memory requirements and operation counts, especially in the case of sparse (with very large band) linear 
systems. Recently, interest in the application of these methods has been revived thanks to the 
introduction of very fast linear solvers and the advent of large, powerful computers. 

These advantages are amplified by employing an MSA technique both for the capability of 
introducing locally refined grids and for the reduction of the system unknowns. 

3. I .  Linearizing procedure and system solver 

The implicit time integration of equation (3) requires the evaluation of the numerical fluxes at the 
implicit level, leading to a system of non-linear equations. This can be solved in a non-iterative way after 
linearizing the fluxes with respect to time. They are computed by means of the PB upwind scheme; the 
linearization is carried out by Taylor expansion. For example, 
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Analytical computation of the Jacobian matrices in (6) is very diffi~ult;’~ we calculate the derivatives 
in a numerical way by solving a set of modified RPs. For example, the first Jacobian matrix J = [Jm] 
(m = I ,  2, 3 ,  4) in (6) can be obtained as 

where U = [u, + hm,AuIT (n = 1, 2, 3, 4; a,, is the Kroneker symbol) and Au= lop4. 
The implicit linearized PB scheme can be written in a compact form as 

[%I Ati,j - (E)” au . . ]Auj., + s= 5 1 (:)’.us = -RFj V51i,j c 51, 
‘ 7  J S 

where the index s indicates the neighbouring cells of the cell i , j .  Equation (8) drives to a block 
pentadiagonal (each block being 4 x 4 in 2D) linear system; the solution is required at each time step. 

It is interesting to note that this scheme is an ‘augmented’ Newton method (it becomes’ a standard 
Newton iteration if At + a) and that the obtained steady state is independent of the time step. 

The linear system given by equation (8) is an approximate form of the PB non-linear implicit scheme 
(3). To obtain fast convergence, it has been found4 that it is better to solve the linear problem to a 
moderate degree of precision and proceed to the next time step; thus iterative methods are well suited to 
the present framework. 

In recent years the conjugate gradient squared method has been recognized as an attractive variant of 
the conjugate gradient iterative technique for the solution of non-symmetric linear systems. In many 
situations, however, one is faced with a quite irregular convergence behaviour of CGS, in particular 
when starting the iterations close to the solution. This is a common situation in the final stages of time- 
dependent problems and motivated our search for a smoothly converging variant of CG which did not 
forfeit the attractive speed of convergence of CGS. This proved to be the BiCGStab technique of Van der 
Voorst, accurately described in his original paper. 

3.2. The multiblock structured approach 

The physical domain is partitioned into NB regions (blocks) in which a structured grid is built and 
where the flow equations are integrated independently. Specifying by b the index of block Bb 
(B, U . . . U Bb U . . . U BNB = R), the problem is reduced to 

Additional ‘artificial’ or internal boundary conditions need to be specified on the internal boundaries 
introduced by the block decomposition. They consist of defining a proper RP for each cell face 
belonging to the block interface. Their numerical implementation depends on the allowed structure of 
the grid across blocks. In fact, an interesting feature of the MSA is the possibility to built independent 
grids in each block where the grid size can be chosen according to the relevance of the flow region and to 
the expected flow gradient. In this way the total number of grid cells can be significantly reduced, 
preserving the target accuracy. In the work of Hessenius and Rail4 a conservative boundary scheme for a 
discontinuous grid across the block interface was presented and applied to a first-order upwind solver. 
We propose here a simpler and more efficient approach that allows the computation of the numerical 
flux at an interface with ‘partial’ discontinuity in the distribution of grid points: the refinement (in the 
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- Underlying grid 
(a) (W 

Figure 2. Discontinuous grid versus partially continuous grid 

fine block) is applied to the underlying continuous grid through the interface (Figure 2). The algorithm 
can be better explained with the help of Figure 3. An extra layer of grid cells is added to the ‘ h e ’  block 
B 1 .  In these cells the flow state is computed by copying the states of the overlapping coarse cells: 

- Vj2 = 1, . . . , NJ2, Vk = 1, . . . n UNI,+I . ;2+k- l ,B ,  - u1,;2,B29 

Hence the interface flux for block B1 can be computed by solving a set of Rps by the same inner block 
algorithm. Finally, the fluxes of the ‘coarse’ block B2 are computed by forcing their conservation across 
the internal face: 

n 

k= 1 
F1 /2 , ;2 ,B ,  = c FNl,+1/2,j2+k-1,BI 

The proposed MSA modifies the time integration procedure, since the block decomposition splits the 
implicit upgrade of the flow state u in R in the solution of NB uncoupled linear systems and the applied 
internal boundary conditions have an explicit nature. For this reason, modifications in the convergence 
histories can be expected owing to the introduction of the MSA. The study of these effects is outside the 
scope of the present paper and will not be treated here. 

4. RESULTS 

The selected 2D inviscid test cases are supersonic channel flow (test A) and hypersonic blunt body flow 
(test B). 

Test A was proposed by Spekreijse,” who adopted a first-order Osher ARS and a second-order 
MUSCL Osher ARS. It consists of a supersonic channel (Mhlet= 1.4) with a 4 per cent circular arc 
bump. The computational grid has 96 x 32 cells and is reported in Figure 4 together with the iso-Mach 
contours of the solution, In Figure 5 the Mach number distribution on the lower surface of the channel is 
compared with the results of Spekreijse and demonstrates a substantial agreement between the PB and 
the Osher ARS. 

A comparison between linear system solvers has been carried out to evaluate the performance of the 
BiCGStab technique. All the computations have been performed on a Convex 3420 vector computer. In 
Figure 6 are reported the convergence histories (residual versus CPU time) of some iterative linear 
system solvers (SOR, CGS, BiCGStab) and one classical direct solver (Crout). The conjugate gradient 
methods (CGS, BiCGStab) provided the best performance. The Van der Voorst algorithm demonstrates 
its effectiveness especially in damping the higher frequencies, as can be seen from the final part of the 
convergence. 
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Figure 3. Computation of fluxes at an LGR interface 
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Figure 4. Test A: grid and iso-Mach contours (AM= 0.1) 

GRID 96x32 - Mach=1.4 - CFLSl.9 
i 

GRID 96x32 - Mach=l 4 - CFLSl 9 

1 -0.5 0 0.5 1 1.5 2 
x (body) 

Figure 5. Test A: Mach number distribution on lower surface of channel 
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Figure 6. Test A: comparison of linear system solvers 

The performance of the new implicit algorithm is presented with respect to the original PB explicit 
scheme in Figure 7. A drastic reduction in the number of time steps required is evident. 

Table I lists the CPU times required for both explicit and implicit schemes: improvements of one 
order of magnitude are shown. In this table the speed-up is the ratio between the explicit and the implicit 
CPU time. 

The implicit PB scheme is always stable, but in practice there is no point in raising the CFL above 
1000 because of the large discretization error introduced in the integration of the equation (scheme (8) is 
only first-order-accurate in time). 

Figure 7. Test A: convergence history of implicit versus explicit PB scheme 
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Table 1. CPU times required for 2D wind tunnel test case on a Convex 3420 

Time integration CFL Iterations CPU time (s) Speed-up 

Explicit 
Implicit 
Implicit 
Implicit 
Implicit 
Implicit 

0.9 1385 
10 78 

100 48 
500 46 

1000 47 
2000 51 

1634.4 1 
541.7 3.02 
257.3 
221.7 
238.5 6.85 
271.1 6.03 

g::: 

Test B consists of a hypersonic flow (Ma = 5 ,  a= 30") past a double ellipse. In Figure 8 we show the 
solutions obtained using the original explicit upwind scheme (left) and the present method with a locally 
refined grid (right). The continuous one-block grid is built by 256 x 92 cells. The LGR grid is 
composed of 24 blocks with a total of 11,530 cells. The refinement strategy has allowed us to employ 
finer meshes in the nose region with subsonic flow (Figure 9) and in the canopy shock region. In this 
relatively simple case the LGR has been chosen a priuri; for more complex applications an automatic 
adaptive LGR procedure could be implemented on the basis of the local flow gradient. 

In Figure 10 the Mach number distribution on the solid wall is presented: the solutions for the one- 
block fine grid and for the LGR grid are equivalent in spite of a saving of 13,056 cells. It is interesting to 
analyse the behaviour of the solution at the LGR interfaces near the solid wall. The solutions are strictly 

Figure 8. Test B: continuous grid versus LGR grid and iso-Mach contours ( A M = 0 . 2 5 )  
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Figure 9. Test B: enlargement of nose region (AM= 0.1) 

the same where the refined grid is equal to the fine grid; the local nominal accuracy of the scheme is 
respected across the interface and is slightly reduced in the coarser regions according to the local mesh 
size. 

In terms of computational costs the LGR implicit calculation required 1071.2 s of CPU time while 
the fine grid computation with the PB explicit scheme took 15640.5 s. The convergence histories are 
reported in Figure 1 1. 

.c 
8 

Hypersonic Double Ellipse Flow 
3 

FineGrid - 
LGR grid b 

-1 -0.9 -0.8 -0.7 -0.6 -0.5 0.4 -0.3 -0.2 -0.1 0 
Xic (Surlace of the Double Eliipse) 

Figure 10. Test B: Mach number distribution on solid wall 
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Figure I 1. Test B: convergence history of implicit versus explicit PB scheme (CFL explicit = 0.95, CFL implicit = 200) 

5 .  HIGH-ORDER UPWIND SCHEME 

Owing to the large numerical dissipation introduced, first-order upwind methods do not allow accurate 
solutions of smooth flow regions. We therefore extended the PB scheme to second-order accuracy to 
discover whether the proposed techniques could provide sufficient speed-up in practical CFD 
applications. 

The definition of high-resolution schemes is based on certain mathematical concepts such as 
monotonicity and TVD.16 We are interested in TVD upwind schemes that can be classified on the 
basis of the principle used to compute interface fluxes in ‘algebraic’ or ‘geometric’ methods. 

Algebraic schemes are constructed by adding low-order and high-order approximations of the 
numerical flux by means of a weight function that is computed on the basis of ‘flux’ limiter~.’~ In the 
geometric approach, attempts are made to reconstruct dependent variables within each control volume 
subject to monotone constraints by using ‘slope’ limiters. 

From a more general point of view we can upgrade the PB first-order scheme to second-order 
accuracy by modifying the projection stage or the evolution stage, obtaining respectively a MUSCL-like 
or a symmetric PB (SPB) scheme. In this context we show results concerning the application of the SPB 
scheme. 

The basic idea is extensively discussed in the work of Yee.18 Roughly speaking, we modify the 
numerical flux evaluation, equation (4), by introducing a limiting procedure, e.g. 

where gk) = Q(r&, r ~ ) ) .  With reference to Section 2 we can define, e.g. along r 2 ,  
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where W is the integral along the subpath r2 of the corresponding Riemann variable. Some limiter 
functions Q are listed in Reference 18; we use Q = MinMod( 1, r+, r-) ,  which is a compromise between 
‘compressive’ behaviour and simplicity. 

In Appendix I1 the complete algorithm for the flux computation of the SPB scheme is presented. 
In multidimensional flow calculations, SPB is more accurate than PB but too dissipative with respect 

to Osher MUSCL.’’ This is shown in Figure 12 for test A. Better results could be obtained using a more 
‘compressive’ limiter, but in this context we are interested in the efficiency of the acceleration 
techniques with high-order schemes. 

The decay of the convergence rate for the explicit SPB method with respect to PB is shown in Figure 
13. A limit cycle results with periodic oscillations of the residual. This is a consequence of the highly 
non-linear nature of the SPB scheme. The implicit method preserves its fast convergence property even 
if conjugated with second-order flux evaluation (in the LHS of equation (8) we simply took Q = 0 and 
therefore the shape of the implicit operator is preserved). 

6. CONCLUSIONS 

A new multiblock implicit algorithm for the solution of the two-dimensional Euler equations is 
presented. The method is based on the upwind formulation of Pandolfi and Borrelli. The implicit 
unfactored method is written in ‘delta’ form and leads to an efficient and compact computational 
method. The linear systems arising at each time step are solved by a modem technique belonging to the 
conjugate gradient class, BiCGStab. 

The present formulation has allowed us to rule out all the tuning parameters (artificial viscosity, 
entropy fix, CFL bound) in such a way as to obtain a robust and efficient method well suited for 
super/hypersonic shock-dominated problems. 

Numerical experiments were performed to validate this scheme. One selected test case was a 2D 
hypersonic blunt body flow. The CPU time required is reduced by a factor of 14 when the implicit time- 
marching procedure is used together with a locally refined grid. 

Grid 96x32 - Mach=1.4 
1.7 n 1 

1.6 

1.5 

1.4 

1.3 

1.2 

1 1  

I 
1 -0 5 0 05 1 1.5 2 

x ( M Y 1  

Figure 12. Test A: Mach number distribution on lower surface of channel 
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GRID 96x32. Mach=l.4 
0 

SPB Explidt CFLd.5 - 
SPB lrnplidt CFL=200 

PB Explicit CFLd.5 ...-- 
-0.5 

0 200 400 600 800 1000 1200 
5nm Iteration 

Figure 13. Test A: convergence history of implicit versus explicit SPB scheme (CFL explicit = 0,95, CFL implicit = 200) 

The original first-order spatial discretization has been upgraded to second- order accuracy to verify 
that the developed time integration can be used together with the new generation of TVD schemes. 
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APPENDIX I: NUMERICAL FLUX EVALUATION WITH PB SCHEME 

The procedure to calculate the numerical flux Fi+,,* can be divided into six steps. 

1. Projection stage: 
T T T T 

ua = [Pi,jvi ,f l i ,j l  = [Pa, va,Pal 9 ub = [Pi+l , j '  v i + l . j ~ P i + l , j l  = [Pb, vb,Pbl  * 

2. Set RP: 

~c + (Paaalvc = P a  + @aaa)va, hc - P c I P a  = ha  - P a l p a ,  

P c  = P d ,  vc = vd, 

P d - @bablv d =Pb - (pbab)vbp d - P d / P b  = hb -Pb/Pb .  

3. Solve RP: 
T 

u c  = [Pc ,  Vc9PclT7 "d = [Pd? vd,Pdl  . 
4. Compute flux f: 

fa = f(u,), fb = f(Ub), fc = f(u,), f d = f(Ud). 
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5. Compute eigenvalues: 

I ,  = v, -a , ,  1, = v,, A3 = vb 

6. Evolution stage: 

F i + l / 2  = (fa + fb)/2 - [sidAl>(fc - fa) + d - fc) f sign(A3)(fb - fd)1/2. 

Here p is the pressure, p is the density, a = ( y ~ / p ) ' / ~  is the speed of sound (y is the constant of the gas), 
h = a2/ (r  - I) is the enthalpy and v is the velocity normal to the considered interface. 

APPENDIX 11: NUMERICAL FLUX EVALUATION WITH SPB SCHEME 

This procedure is almost the same as the one presented in Appendix I. It differs only in introducing 
limiters in the evolution stage. To calculate Fi+1/2, we have to compute Qi+l/2 (see equation (12)). The 
kth component is 

where w = [P, -pa - paaa(vc - v,), hd - h,, P b  - pd - pbab(h + Vd)lT is the vector of Riemann 
variables. To evaluate the flux across the interface i + f, we must compute W at ( i  - i ,  i + i, i + $) 
and Q. Then we can limit the evolution stage: 

Fi+1/2 = (fa -k fb)/2 - [(I - @))si&AI)(fc - fa) + (1 - Q(2))sifV(Az)(fd - f ~ >  

+(l - e(3))sid13)(fb - f ~ i ) l / ~ .  
We use the two-argument limiter defined in Reference 18: 

Q = MinMod( 1, r', r) = Max(0, Min(1, r+, F)). 

ARS 
BiCGStab 
CFL 
CGS 
FDS 
GMRES 
LGR 
LHS 
MSA 
MUSCL 
PB 
RHS 
w 
SPB 
TVD 

APPENDIX 111: ABBREVIATIONS 

approximate Riemann solver 
bi-conjugate gradient stabilized 
Courant-Fredrichs-Lewy 
conjugate gradient squared 
flux difference splitting 
generalized minimum residual 
local grid refinement 
left-hand side 
multiblock structured approach 
monotone upstream scheme for conservation laws 
Pandolfi-Borrelli 
right-hand side 
Riemann problem 
symmetric PB 
total variation diminishing 
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